Guest blog from the 15th Scientific Conference of the Section Phycology

At the end of Feburary, our German collegue Balsam Al Janabi attended the 15th Scientific Conference of the Section Phycology, organized by the German Botanical Society. We persuaded her to tell us about it as a Guest Blogger.

The 15th Phycology seminar took place in the beautiful marine museum of Stralsund from 23rd until the 26th of february 2014. Members from the Phycology Section of the German Botanical Society and other researchers presented a huge variety of phycology research. Organized by the University of Rostock, Prof. Dr. Ulf Karsten lead us through 59 oral presentations and 2 poster sessions, so that about 100 scientists had the change to know the research of almost all phycological disciplines and to establish contacts. English presentations were held from Bachelor-, Master-, PhD-students and Professors from Austria, Ireland, Greece, Netherlands, Mongolia as well as all over Germany, especially Kiel, Rostock, Cologne and Constance.

Phycological presentations
Eleven structured sessions, brought the audience through different principle topics with special secctions of Polar and high Alpine Phycology, the Bioacid project and a presentations in memorium to Prof. Dr. Dieter Mollenhauer (who passed away May 2013) and in honor to his contributions to his activities to promote phycology in Germany.

The antarctic research session included fascinating sessions showing the kelp system in the Antarctic seaweed system with regard to global change revealing biomass and biodiversity changes up to ecotypic differentiation. Stecher, winner of the best talk award, brought the audience below the ice of the Arctic and the DNA- and RNA of sea ice algal communities. Besides future research, also insights into the past were discovered by means of Paleolimnological studies: radiocarbon-dated sediment revealed informations about diatoms, pollen and geochemical proxies up to the Neolithic period. Analysis of biodiversity was another focus of the seminar, as for instance the diversity of the rain forest in equador. Physiological aspects, as the light regulation in diatoms explained the role of aureochromes and cryptochromes by gene silencing methods. Other approaches from terrestrial habitats revealed transcriptomic analysis as in Klebsormidium crenulatum with regard to the physiological performance under desiccation stress. Investigations about microphytes were often interesting in this seminar, as during the applied phycology session, showing the usage of algae for biogas production. The variety of disciplines was also shown by a presentation about the BIOMEX project illustrating not only the laboratory analysis of space conditions for cyanobacteria, algae and even mosses, but also the planned analysis in the international space station (ISS).

Seaweed research
The Bioacid session focused on the climate change scenaria from mesocosm experiments in the Kiel Benthocosms, a near-natural scenario analyzing a seewead community as including an experiment on the interaction of environmental stress and genetic diversity of Fucus vesiculosus. Also bacterial communities of the biofilm between the present and future scenario are compared. Fucus vesiculosus was also analyzed for their seasonality of defense as a response to the seasonal variation of micro- and macrofouling pressure. Furthermore, the gen expression under herbivore grazing was demonstrated for Fucus vesiculosus. Also other physiological aspects of brown macroalgae (Phaeophyceae) showed the iodine to salinity response in Laminaria digitata and mechanisms of photoacclimation of the giant kelp Macrocystis pyrifera revealed the relation of antioxidants with the depth at which algae appear. The role of two bacteria for morphogenesis was presented for the green algae Ulva mutabilis.

Networking and Award Ceremonies

Future network was supported by talks about the GBIF database for algae and protists as well as by insights in the SAG culture collection. During the award ceremony of best poster, Algological study and E.G. Pringsheim-Prize, the winner of the ‘Hans-Adolf von Stosch Medal’ was Prof. Dr. Michael Melkonian for his great contributions in Protistology and Phycology. He shared his experiences of decades of phycological investigations as well as appreciated cooperations.
Personally I appreciate the participation of the phycology seminar, especially due to the mixture and the connection not only of disciplines, but also of specialists and opportunities as a PhD student having the chance to discuss my methods and results with during a nice coffee brake.
//Balsam Al Janabi

Have you attended any seaweed events or do you work with seaweed and would like to tell us about it?
Feel free to contact us and become a Guest Blogger at

Roskilde revisited

Well, here we go!
After leaving the experiment with fragments (see previous post) in the basement at Roskilde University over Christmas and New Year, it was finally time to go back and see if any of the small fragments of ( Fucus radicans ) has been well behaved ande done what we want them to.

There can be MANY fragments on just one ramete of Fucus radicans

There can be MANY fragments on just one ramete of Fucus radicans

A quick refresher of the experimental background and purpose:
In the ​​Bothnian Sea, the brown macroalgae Fucus radicans has been shown to be up to 80% clonal, something that is unique among seaweed belonging to the Fucus – family.
However, it is not unusual for algae to adapt with a more clonal life cycle in brackish environments (salinity between 2-15 parts per thousand) because their sexual reproduction requires the sodium ions (NaCl – sodium chloride) from salt to work (see post about this here).

When it was discovered that Fucus radicans was clonal , it could also be described as a separate species. It was previously thought that it was a dwarf morph of Fucus vesiculosus, which is the dominant macroalgae in the Baltic Sea.

In order to reproduce clonally, fragments from one individual falls off from the parent plant and then attaches to the bottom again. But under what circumstances does this happen? What are the most favourable conditions for the fragments to re-attach? Should it be on hot summer days or cold winter nights?

Once we know this, we can understand more about when Fucus radicans is most sensitive to disturbances in the form of e.g. chemical emissions, eutrophication or construction work that affects the aquatic environment. We hope that our experiment can help to provide a better basis for management decisions concerning the Baltic Sea’s unique and fragile environment.

So, how did we set up our experiment?

We collected fragments from several plants of seaweed from different sites. Since we can neither afford nor have the time to run genetic tests on them to see that they are not all the same individual, which of course can happen when working with a species that is clonal, we made sure to get both males and females. For a longer story on startup, read the post on our startup HERE.

But on this trip it was time for me and my colleague Tiina Salo to do our first reading of the experiment.

Research is largely a matter of daring to fail, over and over again. The pile of rejected hypotheses about how one thought it might be is growing rapidly. Guess if we were surprised when our experiment had not only managed to run the whole time period without the electricity shorting out completely (except for some problems in the beginning that Tiina solved). We had results!

Two amazed PhD students could not believe their eyes.

So after checking all 96 replicates with four small fragments in each jar, I took out the bag with Fucus radicans that I had taken with me from Stockholm and we began to sort 384 new fragments into the jars for another round.

Fragments, fragments, fragments...

Fragments, fragments, fragments…

In the evening, I saw fragments when I closed my eyes.

Now, the second round is getting on and there will be a trip down again for me in early February to finish it, and hopefully get the same result as in our first round. You never know when it comes to seaweed, so keep your fingers crossed.

Fragment experiment started in Roskilde, Denmark

At the end of November, I spent a week at Roskilde University in Denmark.
By invitation from fellow marine botanist professor Morten Foldager Pedersen, I went there to start up an experiment on Fucus radicans together with his PhD-student Tiina Salo.

Fucus radicans is named after its ability to reproduce asexually by fragmentation. Radicans is latin for “root-forming”, and although algae do not have roots, they form root-like attachments to the substrate, called rhizoids. So, when a small fragment falls off the mother algae, it can re-attach and form a new thallus, which is a genetically exact copy of its “mother”, i.e a clone.

A fragment of Fucus radicans has formed new rhizoids, attaching to the bottom of a petri dish.

A fragment of Fucus radicans has formed new rhizoids, attaching to the bottom of a petri dish.

To reproduce in this way is not very common within the Fucus-family. We do not know what favours this mode of reproduction, unlike the sexual reproduction where we know that salinity plays a major role, but light and temperature is also important.

So, in order to find out how Fucus radicans has the best non-sexual reproduction, we designed the experiment in Roskilde.

The parameters we have decided to try are light, temperature and water movement.

Together with Tiina, I spent the better part of the week in the basement of the Biology department, in a temperate chamber filled with algae, sea urchins, a hard-at-work master student and the all-time favourite combination of electricity and water.

 The light box is fitted over one of our white tanks.

The light box is fitted over one of our white tanks.

In order to decide if any of our tested parameters, alone or in any combination, contributes to the formation of rhizoids, you have to plan the setup so that the results can be testad statistically. This means that you have to think hard before you start the experiment, so that you can use the data to actually answer your initial question. I’m in luck. Tiina is a total wiz when it comes to statistics, and two heads are better than one.

 To the right can be seen the heater (square box) and the cooler (spiral).

To the right can be seen the heater (square box) and the cooler (spiral).

I had brought some Fucus radicans from some different localities with me to Roskilde. We picked off small fragments, no bigger than 1 cm, and placed them on tiles. Tiina bought them at Bauhaus and had had the same experience as me. Why is it considered strange to be more interested in the back of a tile?

 Four small fragments on a tile.

Four small fragments on a tile.

Finally, we were all set and could switch on the electricity again. We’ll leave it for approximately seven weeks, then I’ll go back and check the result. Meanwhile, wee keep our fingers crossed, hoping that the seaweed will cooperate and form nice new rhizoids. We’ll keep you updated.

 It is fun to work with seaweed!

It is fun to work with seaweed!

Day 5 EMBS – The final sprint

It’s not fun to get the presentation slot first out on the morning after the conference dinner. But Katarina from Estonia got a good attendance and gave an interesting presentation on the zebra mussel (Dreissena polymorpha) and its impact on the ecosystem of the heavily eutrophicated Pärnu Bay in southern Estonia.

Maillie Gall from Australia told A story of two sea urchins, in which she compared the population genetics of the two sea urchin species Heliocidaris erythrogramma and Heliocidaris tuberculata to see how far their larvae spreads. She has primarily examined whether the duration of the planktonic larval stage plays a role for the spreading distance. It was very nice to rest those weary eyes on some beautiful pictures of sea urchins and Australian waters.

Jennifer Loxton held one of the conference’s coolest presentations, according to me. She showed how a bryozoan (phylum Bryozoa, it’s an animal) that came into English waters recently from Japan, reproduce like crazy. With movies and beautiful microscope images, we see that most of the currently known bryozoans form one egg bump per individual, where a larva is formed which then swims away and form a new colony. The Japanese moss animal produces up to five bumps, simultaneously! Unbelievable. The animal is red in color and thrives in cold water with high salinity, so we’ll probably not see it at the Swedish coast.

Final speaker of the conference was Paul Somerfield from Plymouth Marine Laboratory, renowned marine biologist and statistician, who talked about how to use statistics and not place too much weight on that which is odd or rare if one wants to describe an overall pattern. The presentation was entitled “Putting the species back into community analysis “. Funny, easy to understand and relevant!

Field season in full bloom

The days are just soaring by as the field season hits its high peak.

Helping us in this organized chaos is Frances Ratcliffe, volonteering marine biology student from UK. It’s such a help to have an extra pair of hands. We are very glad to have her with us.

Frances and bladderwrack!

Frances and bladderwrack!

The week before last was spent at the Askö laboratory, were we ran the Baltic Sea part of a two-station experiment wich will look closer on the effects of grazing snails on seaweed.

First, we put the seaweed (Fucus vesiculosus and Fucus radicans) grow a while without any grazers, in order to get undamaged tissue.

Seaweed growing

Seaweed growing

After a couple of weeks, we placed the tips in jars with gastropods (marine snails) and let them graze for a couple of days. We so hope that they were hugry and ate a lot, so that we can see the grazing damage under the microscope later on.

45 jars with gastropods and an even flow of water. Amazing what you can build with a pipe and some hose.

45 jars with gastropods and an even flow of water. Amazing what you can build with a pipe and some hose.

Once the seaweed was grazed, we collected some Ulva intestinalis, a green algae, and made it release its spores.

<img src="" alt="Ulva intestinalis spores makes the water go green.” width=”300″ height=”224″ class=”size-medium wp-image-910″ /> Ulva intestinalis spores makes the water go green.

What we hope to see is if the spores will be able to grow on the grazed surface of the seaweed.

<img src="" alt="We have seeded the grazed seaweed by poruing spores of Ulva intestinalis in the water” width=”300″ height=”224″ class=”size-medium wp-image-920″ /> We have seeded the grazed seaweed by poruing spores of Ulva intestinalis in the water.

Let’s keep our fingers crossed and hope that it grows!

The week that was and this week, is spent at Tjärnö laboratory on the other side of Sweden, were we are running the same experiment, but in saltier water and with Ascophyllum nodosum instead of Fucus radicans and with other gastropods.

Our lives have been made so much easier thanks to Marit, who is doing her master thesis together with us. She has tended to our experiment so that we didn’t have to go back and forth between the coasts like crazy. Thank you Marit!
Meanwhile, she has also done an enormous fieldwork on a very interesting study on gastropods and seaweed, that we hope to write more about here on the BalticSeaWeedBlog.

Marit shows her disected gastropods.

Marit shows her disected gastropods.

it is always nice to meet and talk about seaweed. We had many nice discussions on this fascinating topic.

Frances, Marit and Lena discuss seaweed at Tjärnö Laboratory.

Frances, Marit and Lena discuss seaweed at Tjärnö Laboratory.

Seaweed course in Denmark

The week has been spent in Denmark, on a full Sunday to Sunday course to learn more about macroalgae.
With a schedule so full you can hardly fit it to a paper, the hopes and expectations to become a real seaweed guru are high.
There are 11 PhD students partaking, all from different countries!
The course is arranged by Aarhus University, as you can see in their newsletter (sorry, only in Danish).

Our first day of the course, we went out to collect macroalgae in the field. We started at the pier next to Ebeltoft harbour, where the sun shone and it was lee on the inside where we were working. I took this years “first swim without a drysuit in Nordic waters”. It was a refreshing 16 degrees Celsius and I was in the water for about 10 minutes, collecting material. Here there were four Fucus species growing: Fucus spiralis, Fucus vesiculosus, Fucus evanescens and Fucus serratus. Jackpot!

Lots of seaweed!

Lots of seaweed!

After a field lunch of sandwiches, we headed north, to Grenaa. Here, the Marine Home Guard and their boat took us out on Kattegat! What a luxury! This is a new collaboration between the Home Guard and Aarhus University, so the Danish TV was out and filmed us. Click here and fast forward to 1:19 into the clip and there we are.

Monday evening and Tuesday was spent going through the collected material to determine the different species and look at their different physiological structures.
On Wednesday, we tried to reproduce sugar kelp ( Saccharina latissima ) by getting them to release spores. It didn’t quite go as planned, so we took some good old bladderwrack and got it to release eggs and sperm instead.

On Thursday, we went to Algcenter Grenaa and had a look around. Pictures from our visit you can see the Algcenter website

Anette Bruhn show us how they cultivate sugarkelp at the Algcenter

Anette Bruhn show us how they cultivate sugarkelp at the Algcenter

We also got to visit the Kattegat Center, located just across the parking lot. This is one of Denmark’s many fine aquariums that have long been on my wish-to-see list. It was just as good, if not better, as I had expected. There was even an exhibition of algae and their importance. It is totally worth a visit!

Friday and Saturday were devoted to compiling and analyzing all of our data, and then present it in four groups according to various themes (Taxonomy, Monitoring, Light and Cultivation).

Danish seaweed; red, brown and grøn

Danish seaweed; red, brown and grøn

21st International Seaweed Symposium – Day 1

Overwhelming! That’s the word that remains after you have entered the Bali Nusa Dua Conference Center and see all exhibitors showing 101 use of seaweed.

A phletora of products involving seaweed.

A phletora of products involving seaweed.

It is quite often I get to inform people that algae is actually a common ingredient in many of the products we use daily, such as shampoo, soap and toothpaste. But there are more represented here than I thought possible! Many companies producing various substances from seaweed are represented, followed by those that further refines the extracted elements to create all manner of products. Most exciting is of course the abundance of food with algae, both in pure form, such as seaweed snacks and jelly in different shapes (and colors!) made of agar agar extracted from seaweed. And it’s a tasting of everything! This is not a conference you go away hungry from. Possibly you have set the stage for diabetes, though.

There is no end to what gastronomy can do with seaweed!

There is no end to what gastronomy can do with seaweed!

We will post pictures, both in blog posts and in the gallery, so that you who are following the blog may take part of the diversity.

The opening ceremony of the conference began with a traditional Balinese dance and the Indonesian national anthem, followed by a number of prominent dignitaries, who in five minutes per person explained that they were pleased and proud that the conference was held here in Bali and that algae are an important part of the region’s economy and important global product. At least I think that’s what was said, when many spoke in Indonesian. But the audience seemed pleased and it was much applause. In the audience were amongst others the Fisheries Ministers from Tanzania and Morocco and Bali’s trade and industry minister.

There are a total of 38 countries participating in the symposium, most from the so-called Coral Triangle (Indonesia, Sulawesi and the Philippines) but Europe is well represented. The country with the highest number of presentations is Malaysia (57), followed by Indonesia (47), with France (31: Not bad.) in third place.

The flags of all participating nations.

The flags of all participating nations.

Mini Symposium: Integrated mulit-trophic aquaculture IMTA
Aquaculture is not without problems, as most of you probably already know. One example are fish farms, which releases nitrogen and other substances in the water around it and on the bottom under the cages. To reduce the negative effects one can grow several different species together, where the waste of one becomes the other’s nutrients. Here, seaweed is a major factor.

Alejandro H. Buschmann began by summarizing the need for more research on how seaweed work in co-cultures, if they can transfer infections between each other or to animals, and that more research is needed on integrated culture of species from different trophic levels.

Helena Abreu presented the IMTA studies conducted in Europe, which is far behind Asia in this aspect, focusing on seaweed cultivation. For example, they tried to reduce the negative environmental impacts of land-based fish farms in Norway and France by growing Ulva spp (sea lettuce) as nitrogen cleaner. The important thing is to get a seaweed product that there is a market for, either as food, fertilizer or to extract different substances from.

Interest in IMTA growing in Europe, especially since there is a need for greater production of aquaculture animals, and therefore a need for more waste treatment, but also the need for a diversity of organisms to grow, in order to have safer and more sustainable systems. The interest in seaweed is huge in Europe, not only as food but also as an ingredient in skin products and for the extraction of biofuel.

With the increased need, it is important to assess that farming and harvesting are done in a sustainable way, so that one does not get a boom-and-bust problem, taking out too much and causing the system to collaps.
In addition to the biological and technological challenges, where fish farmers should learn to cultivate a new species, there are also some regulatory barriers that need to be resolved.

Today, it is mainly Norway, Portugal, France, Ireland and Denmark that grow seaweed on a large scale in Europe. They grow mainly kelp species, mostly Saccharina latissima which can be found on our Swedish west coast, too. In Denmark, there is co-farming of kelp with trout and clams or only kelp and mussels. The kelp is grown on long ropes that hang freely in the water, looking a bit like a clothesline.

In Brittany, France, oysters and algae are farmed together. Here, it is the green alga Ulva (Sea lettuce) that is growing on oyster cages. In Portugal (using the water outside Senegal) they are cultivating kelp with sole (the flat fish), something that is also tried on the Canary Islands. In Ireland, they grow the delicious brown alga Alaria esculenta together with salmon.

In order to extract as much as possible from farmed algae there is a project to create a macroalgae biorefinery. This is collaboration between several European countries, hoping to launch a thriving seaweed culture industry also in Europe, once the current financial crisis has been resolved.

Contributed papers: Cultivation techniques

Agar is extracted from the cell walls of agar producing seaweed such as Gracillaria sp. Depending on whether the seaweed are grown in large tanks on land, in larger ponds or in the ocean, there is a variation in growth rate, growth of fouling algae, susceptibility to various diseases and the chemical content of the algae.

In Malaysia, Dr Su has assessed the pros and cons associated with each method, and also tried other methods. This included the use of floating net cages, which are often used in fish farming. They also let spores settle on fixed bottom nets and ropes, which gave a greater return on the ropes over the nets. Problems connected with ropes and nets were primarily that many other species also liked to grow there (fouling).

Dr Su from Malaysia explains her findings in culture methods.

Dr Su from Malaysia explains her findings in culture methods.

To evaluate which method was the best, not only in quantity algae produced per unit of time, they also analyzed the finished agar powder to compare the quality of the product. They found that from some areas the product contained excessive levels of lead, too high to be sold as food. The water chemistry and pollution history of an area are important to take into account when determining whether to start growing seaweed for consumption.
The main problems, though, are still grazing and unwanted growth of other species (fouling).

Norwegian salmon farming is growing rapidly. Up in Trondheim, where there are plenty of salmon farms, they have grown Saccharina latissima outside the salmon pens. The seaweed are seeded on long ropes in the lab, then hung out in the water.
Saccharina latissima is seeded in August and will not grow much during the dark winter. But when the light comes back in February to March it starts growing and keep growing strongly until June, where it reaches its maximum. This is harvest time. If you leave it any longer it begins to deteriorate and get more fouled by animals and other algae. Also, the highest concentrations of carbohydrates (alginate, laminated aria and mannitol) are in June.

Saccharina latissima grows best at 5 meters depth, where there is just the right amount of light, neither too much nor too little. Saccharina latissima grown in a salmon farm grew a full 50% more! Norway is ideally situated in order to develop a profitable seaweed faming industry and develop a more integrated aquaculture.

A study from the UK compared various plastic materials in order to find out what kind of surface and chemical composition that is best for seeding and growth of two different species of kelp (Laminaria digitata and Saccharina latissima).

They tried 12 (!) different plastics with different chemical properties, including a plastic consisting of phenol-formaldehyde resin (super toxic!) to see how sensitive the small spores are (kelp, unlike bladderwrack, has spores).

The competition between the two kelp species were checked after seeding, after 5 weeks, after being moved outdoors and after 3 months. Saccharina latissima is more tolerant to the chemical than Laminaria digitata and grew better on most plastics (few to none survived on the super toxic). It seems that plastic is not the best substrate to cultivate Laminaria digitata, but most plastics work well for growing Saccharina latissima. If you want to grow both species, the best plastics are PE, PP and PVC, apparently.