Finally, you can see some of the lovely underwater nature from the Baltic Sea!
As a part of the project Naturkartan,(Nature Map) a Swedish project in the East Gotha county that aims to increase access and awareness to the nature in the county, they have also posted several short films, showing nature under the surface. Have a look at The Underwater Map (Undervattenskartan)and enjoy some summer, sun and lovely waters.
It’s wonderful to take a virtual swim and enjoy the greenery at this cold and bleak time of year. We hope that more coastal counties will pick up on the trend and choose to market their blue side.
The forrest under the surface is well worth a visit
I was given a kelp granules shaker from my aunt after looking after her plants during her trip to the U.S. Near to addictive, sad was the day when my shaker was empty.
Lo and behold, today as I opened the blog, who has started following us but the producer of said granules! They even have their own seaweed blog, entitled Kelp: one of the worlds healthiest foods.
If you haven’t tried seaweed, but like salty snacks, I think you’ll like this.
My personal favourites are Wakame (Alaria esculenta) and Dulse (Palmara palmata). Excellent to nibble at during office hours or on a hike.
You’ll find their shop site amongst our Useful liks on the right hand side.
Well, here we go!
After leaving the experiment with fragments (see previous post) in the basement at Roskilde University over Christmas and New Year, it was finally time to go back and see if any of the small fragments of ( Fucus radicans ) has been well behaved ande done what we want them to.
There can be MANY fragments on just one ramete of Fucus radicans
A quick refresher of the experimental background and purpose:
In the Bothnian Sea, the brown macroalgae Fucus radicans has been shown to be up to 80% clonal, something that is unique among seaweed belonging to the Fucus – family.
However, it is not unusual for algae to adapt with a more clonal life cycle in brackish environments (salinity between 2-15 parts per thousand) because their sexual reproduction requires the sodium ions (NaCl – sodium chloride) from salt to work (see post about this here).
When it was discovered that Fucus radicans was clonal , it could also be described as a separate species. It was previously thought that it was a dwarf morph of Fucus vesiculosus, which is the dominant macroalgae in the Baltic Sea.
In order to reproduce clonally, fragments from one individual falls off from the parent plant and then attaches to the bottom again. But under what circumstances does this happen? What are the most favourable conditions for the fragments to re-attach? Should it be on hot summer days or cold winter nights?
Once we know this, we can understand more about when Fucus radicans is most sensitive to disturbances in the form of e.g. chemical emissions, eutrophication or construction work that affects the aquatic environment. We hope that our experiment can help to provide a better basis for management decisions concerning the Baltic Sea’s unique and fragile environment.
So, how did we set up our experiment?
We collected fragments from several plants of seaweed from different sites. Since we can neither afford nor have the time to run genetic tests on them to see that they are not all the same individual, which of course can happen when working with a species that is clonal, we made sure to get both males and females. For a longer story on startup, read the post on our startup HERE.
But on this trip it was time for me and my colleague Tiina Salo to do our first reading of the experiment.
Research is largely a matter of daring to fail, over and over again. The pile of rejected hypotheses about how one thought it might be is growing rapidly. Guess if we were surprised when our experiment had not only managed to run the whole time period without the electricity shorting out completely (except for some problems in the beginning that Tiina solved). We had results!
Two amazed PhD students could not believe their eyes.
So after checking all 96 replicates with four small fragments in each jar, I took out the bag with Fucus radicans that I had taken with me from Stockholm and we began to sort 384 new fragments into the jars for another round.
Fragments, fragments, fragments…
In the evening, I saw fragments when I closed my eyes.
Now, the second round is getting on and there will be a trip down again for me in early February to finish it, and hopefully get the same result as in our first round. You never know when it comes to seaweed, so keep your fingers crossed.
In the last posts, Lena has been reporting on all the interesting finds you can make on the beach after a storm. However, these haven’t been all that much about the different species of seaweed that gets washed ashore during strong winds. So, here is a small exposé of what she found after the storm Sven (Bodil in Denmark, Xaver in Germany).
In some bays on the west coast at Tjärnö, seaweed forms large beach walls whereas in other bays you will only find a few specimens of what is growing just a couple of meters off shore. Seaweed can also come entangled in ropes and lines from far away.
A photo from a bay filled with seaweed forming thick carpets. Later in the year, in the summertime, they will have been decomposed and form a beach wall covered in lush green plants. Seaweed and algae make excellent compost due and was formerly gathered to fertilize the potato patches. If you find a bay full of seaweed you can collect some and put in your garden.
On other shores, like in this photo, there is only some seaweed and the red alga Furcellaria lumbricalis in a band just by the water. This is the popular sandy beach at Saltö. Higher up on the shore some distance away, i found a pile of rope and entangled algae. On closer examination, it turned out to be seaweed from quite some distance, maybe as far away as England.
How can you tell that the seaweed is from far away and not just from next bay or further down the coast? If you look closely at the photo underneath, you’ll see some long, brown slightly knobbly bands, which are the reproductive organs (receptacles) of Himentalia elongata, which has never been found attached in Swedish waters. The nearest site is in Norway. In the pile there is also very large bladders of Ascophyllum nodosum and a form of bladderwrack (Fucus vesiculosus)with several bladders that is much more common in areas of higher salinity that at the Swedish coast. Those of you who look closely on the photograph will notice a red algae on the bottom right, like small, finely branched bushes attached to the Ascophyllum nodosum. This is one of many Polysiphonia species, and this particular species is commonly found growing on Ascophyllum nodosum and it is called Polysiphonia lanosa.
The wrack wall consists, as one might guess, mostly of wracks that have been washed ashore, both bladderwrack and serrated wrack (Fucus serratus). The smaller specimens were still attached to blue mussels (Mytilus edulis)and others had not attached hard enough to rock or boulder and had come loose.
Different sizes of wrack washed ashore, with accessories.
Slightly larger specimens were washed ashore still attached to pebbles. A larger plant of seaweed is very firmly attached to the rock surface and you can lift the rock by holding the seaweed sometimes. It’s not until the wracks get really big that the pull of the wave manages to tear them loose from the rock or boulder to which they are attached. But, if you look closely on the bottom of the holdfast, there is a white calcareous layer. The wrack that has come loose with holdfast has once settled as a small germling on a crustose calcareous algae or a barnacle. So what has actually come loose by the wave force is not the seaweed holdfast, but the barnacle or calcareous alga that can no longer hold on to the rock surface.
The photo shows a holdfast from a Fucus serratus with clearly visible white parts of a calcareous crustose alga. And finally – a somewhat late toast for the new year and wishing you all a happy 2014 from the BalticSeaWeed blog.
Do you want to work with Fucus vesiculosus, Fucus radicans and Idotea baltica in Finland for the renowned Baltic Sea scientist professor Veijo Jormalainen?
Click HERE to read more about the project and how to apply.
Storms are usually named in alphabetical order from the area where they begin. St. Jude was named in England but was re-named by SMHI (Swedish Meteorological and Hydrological Institute) to Simone after the name of the day in the calendar (in Sweden, each day of the year has one or two names) that the storm reached the Swedish west coast. The weather was less severe than expected at Tjärnö, but still quite strong winds and high water levels. I could still see the traces of this a month later, as we took a walk around Saltö.
The clear evidence of how high the water has reached during the last storm can be detected by looking at the size of the beach cast wrack border, and how far up on the beach it is.
This picture shows three clear rows of wrack borders where algae and eelgrass has been gathered by water movements.
During the storm Simone, a lot of algae was washed high up on shore. The material in the wrack border tells us that the entangled algae and some mussel shells were torn away from quite deep locations. Among the species of mussels that I found in the wrack border was the horse mussel (Modiolus moduolus) which looks a bit like the common blue mussel (Mytilus edulis) but is larger and lives at greater depth.
So, how do I tell a Modiolus moduolus from a Mytilus edulis? If you look closely at the picture, you’ll see that the pointy part (the umbo) is not at the tip of the shell as it is on the Mytilus edulis?, but slightly higher up on the shell. The shell of the Modiolus moduolus is also slightly browner than that of the Mytilus edulis, which is typically blue, as the common name denotes.
Other traces on the beach shows that part of the beach cast comes from Norway or even as faraway as from the British Isles, and has been transported all this way before ending up in this tangle of seaweed on Saltö. I found Ascophyllum nodosum, which also grows on the rocky shores around Saltö, but these specimens had much larger vesicles (floating bladders)than the ones at Saltö and were entangled together with reproductive parts of Himenthalia elongata, an algae species that is sometimes referred to as “sea spaghetti”.
Amongst our other exciting finds were several unusually large cuttlefish skeletons. It looked like they had been floating for quite some time in the sea, as they had a lot of green algae growing on them. They are often used as a source of calcium for caged birds. In days of old they were called “whale fish scales”, which is a double fault since the whale is not a fish and hence does not have scales.
There were also remnants of the summer’s fun and games. The lost bucket for catching crabs and a deflated ball. Or the almost ghostly rubber gloves in a bucket of frozen water, which looked like an art installation.
It was a cold but sunny day in November that we made all these discoveries at Saltö, which is part of the Kosterhavet marine national park near the Tjärnö Marine Laboratory. It will be exciting to come back around the New Year and see what coming storms have brought us, and if the bucket with gloves or the ball are still there. Maybe there will be some new species of seaweed from a faraway place, brought here attached to a floating shoe, a log or some other flotsam.
During the summer, the BalticSeaWeed blog did al ot of fieldwork, both at Askö on the east coast and Tjärnö on the west coast.
Among other things, we performed an inventory of algae populations along two transects (laid out measuring tape) outside Tjärnö on the salty west coast.
The scuba diver swims from the beach with a tape measure that has been attached at the waterline down to the depth where no more algae grow. Depending on water clarity, this may vary from a few meters to more than 20 meters depth.
Once the algae end, the diver takes out her slate (the single most important tool for any marine biologist) and begins by noting the depth and how much of the tape measure that’s been rolled out. Subsequently, the diver notes down all the algal species she sees and appreciates how much of them there are, on a 7-point scale (1, 5, 10, 25, 50, 75 and 100%).
When the diver has recorded all of this about the starting point, she swims slowly along the transect (tape measure) and continues to note the depth, length and species when it becomes a visible difference in the species that dominates, in order to produce a map of different “algal belts”.
Each “belt” is also sampled, using frames and bags. The diver uses a fixed size frame, which can be loose or attached to a bag, of a size usually 20×20 or 50×50 cm, depending on how many species and how much algae it is.
The diver puts the frame on the bottom, picks the largest algae by hand and puts them into the bag and then use a scraper to get off all the algae that grows within the frame and whisk them into the bag. It’s harder than it looks to work under water when everything is floating around.
For you to get an idea of how it works, Joakim Hansen, who helped out as dive buddy this summer, shared what he was filming with the BalticSeaWeed blog. Here’s how it looks when you scrape a frame.
Why, then have we done this, except that it’s very nice to go for a dive?
On these two sites, these inventories have been conducted for several years. In ecology, it is very important to have measurements that extend over a long period of time in order to see if there is a genuine change in the environment, or if it is just normal variations between years.
So during the cold, dark months, we will pick up our bags with frozen algae out of the freezer (there were over 30 of them), thaw them, sort them into piles according to species, dry and weigh and record in the protocols, thus getting the number of grams dry weight of each species that grew in each frame. By comparing our data with previous protocols, we can then see if it has become more or less of any species, and if any new species have appeared or if any have disappeared over the years.
Here in Sweden, the frost is making everything sparkling white, and our noses and cheeks red. So what could make us warmer than some Cinema Seaweed? During summer and autumn, several seaweed movies have appeared on YouTube. This is a trend that we hope will last.
Here are links to nice seaweed movies that we have come across.
Nyköpings municipality, just south of Stockholm, has really got the hang of how to show itself from its best side!
Here you can see the two localities Långskär and West Kovik. The gurgling sound you hear is when the snorkel is filled with water.
From Skälderviken down south in Skåne county we can see that both bladderwrack and serrated wrack have recovered. It is also shown that 2013 was an incredibly successful year for the brown algae Dead Man’s Rope (Chorda filum) along most of the Swedish coast.
The movie is by Virtuerack. Virtue is a resource for schools, created by the Faculty of Science at Gothenburg University and The Maritime Museum & Aquarium in Gothenburg. They also have more movies where they show how cd-discs are being placed under a jetty in the sea and become habitat for several algae and animals.
Do you have any nice seaweed movies? Please let us know.
Last Monday it was time to put the seaweed out in the sea for overwintering. After some different trials of overwintering indoors in the Experiment Hall at the Askö Laboratory, with extra lights and air pumps, we have found that it is still difficult to get good enough water circulation and movement for the seaweed to be happy. It becomes brittle and falls apart come spring. But tying plants on to net cages and placing them on the sea floor at some meters depth works just fine!
The weather was amazing. Calm and brilliant sun. But the water level was too high, so now they are places too shallow to remain in the bay all winter. We will have to come back later and move them to a deeper waters. That will be a dry suit -job.
In this year’s seaweed plantation is material from Gotland that we have collected in order to try and solve the question of if there is a third ecotype of bladderwrack. We know from before that in the Baltic Sea we find both summer reproducing (end of May-June) and autumn reproducing (end July-October) bladderwrack. But now it seems that we have found a third type, that reproduces more or less constantly throughout the entire season (May-October).
The Sea Environment Seminar of 2013, was held at Vår Gård located in Saltsjöbaden outside Stockholm. In the morning Lena went for a walk alongthe beach and found plenty of free-floating bladderwrack balls, both in the wrack wall on the beach and also floating in the shallow water, rolling around.
According to litterature, these do not reproduce sexually, and we have never seen any reproductive tips on this form of bladderwrack. Naturally, she collected several wrackballs. Since Lena had forgotten to bring a plastic bag (wich is something a true marine biologist always should keep on her/him), she had to go back to the hotel reception and ask for one. Imagine their surprised looks. The day after, Lena went out to ASkö and tied the wrackballs to little ceramic tiles. What we are looking for is if these freee floating forms will become sexual in spring if they have a fixed up and down. Now they are placed in the sea for the winter, and all we can do is wait for the return of sunlight and warmth in spring, when we can dive down and check if there are any reproductive tips on them.
Film time!
It’s been a long time since we had any movies posted on the blog.
At the Swedish site havet.nu is a nice movie (5.35 mins) on Fucus radicans. Our esteemed collegue professor Kerstin Johannesson explains why Fucus radicans is so interesting from an evolutionary perspective “Smaltång och drivkraften bakom uppkomsten av nya arter (Fucus radicans and the driving force behind the origin of new species). It is only available in Swedish, with no subtitles, unfortunately.